If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2c^2-2c=0
a = 2; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·2·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*2}=\frac{0}{4} =0 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*2}=\frac{4}{4} =1 $
| 3(y-2)=-8y+5 | | (9+z)(4z-3)=0 | | 5^x=29 | | 12.50/8=10/x | | (2x+9)*(x-5)=50 | | u^2+8u+17=0 | | y=2/5y-8 | | 49^x-50(7^x)+49=0 | | 25=15t-1.86t^2 | | S=2x3.14x10xx | | 9x²-11x-20=0 | | 10(5x+0.08)=273 | | 2x+x+3x=28 | | F(0)=4x+10 | | 4x/5+40°=130° | | 10/21=13/(5x+0.08) | | 15(x-4)-3(x-9)+5(x+6)=0 | | F(-3)=4x+10 | | 2.10(3x+2)=70 | | 4(x+5)+3(x-1)=-13 | | F(8)=4x+10 | | 7(x-4)^2-21=0 | | -3(3y+7)=20 | | x=67-(27+19+74/6) | | 2(3x-4)=4(3x+1) | | 16+1.50x=8x | | 4.6x+2x+6x+5x=88 | | 3x+7=-2x^2 | | 1-5/8•x=2-2/3•x | | 6x+4=6x(-1) | | X+x+2x=40 | | 2(3x+1)=7x-11 |